Checkerboard-63 Ornament

How to make it

(https://bebopsturnings.com/ornaments/checker-board-63/)
(Jeff@bebopsturnings.com)

Design

> Using graph paper draw your shape first.
> Then draw boxes the size of your segments.

- 7/16" height for this ornament
- I leave and $1 / 8$ " extra

Definitions

There are a few definitions that you need to understand in order to use the data in the table:

- Segment Thickness $=$ This is the thickness of each segment; thus, the thickness of the ring.
- Segment Width = This is the width of the strip of wood from which you will be cutting the segments.
- $\operatorname{SEL}=$ The SEL is the length of the front of the segment (also referred to as Segment Length.)

Design

Spreadsheet available at \rightarrow
https://bebopsturnings.com/wp-content/uploads/2023/04/Checkerboard63.xlsx.zip

	A	B	c	D	E	- G	H	1	J	K	L	M	N
1	Plans for 3 inch ball * 12 segments per ring * finished ring height $7 / 16$ " [* bottom and top ring is $7 / 16^{\prime \prime}$ solid * $1 / 4$ " wall thickness * rough segment thickness 9/16"					Fill in fields in Yellow							
2													
3			Number of Segments			Angle in Degrees	Angle in Radians	Ring Thickness	Blade Width				
4			12			15	0.262	0.25	0.094				
5													
6			Rad		SEL	Distance Blade a Bl	Between Stop ck	Board	idth		Segr	nts	
7	Row	Type of Ring	inside	outside	Actual	Actual	x 16ths	Actual	$\begin{gathered} x \\ \text { 16ths } \end{gathered}$	\# of Walnut	Length Needed for Ring	\# of Maple	Length Needed for Ring
8	1	Solid	0.000	1.250	2.500	2.500	40	2.500	40	1	2.500	0	0.000
9	2	Segmented	0.500	1.500	0.804	0.776	12	1.000	16	4	2.519	8	5.037
10	3	Segmented \downarrow	1.000	1.625	0.871	0.841	13	0.625	10	4	3.188	8	6.377
11	4	Segmented \downarrow	1.000	1.625	0.871	0.841	13	0.625	10	4	3.188	8	6.377
12	5	Segmented \checkmark	1.000	1.625	0.871	0.841	13	0.625	10	4	3.188	8	6.377
13	6	Segmented \downarrow	0.500	1.500	0.804	0.776	12	1.000	16	4	2.519	8	5.037
14	7	Solid \quad	0.000	1.250	2.500	2.500	40	2.500	40	1	2.500	0	0.000
15													

Wedgie Sled Choice

Homemade

Store Bought

Using a Wedgie Sled

 (https://bebopsturnings.com)
Turning Segments into Rings

- What do you need?
- Sticky Tape
- Flat Surface
- Glue
- Razor Blade
- Hose Clamp
- How to Glue up Rings Article:
https://bebopsturnings.com/tips/segment-gluing-technique/
- Watch me do it on YouTube: $\underline{\text { https:://youtu.be/4z1fqTByllU }}$

BUT for now watch me do it live

Prepare the End Blocks

1. Glue up end blocks. I use maple and walnut
2. Mount the end blocks between centers using pressure to hold the two parts together. (Do not glue them)
3. Turn tenons on both end
4. Separate and chuck up each side and make the walnut as flat as possible

Gluing up the Rings

> Glue on 1 ring at a time using the lathe as a clamp

- I put them together on the table
- Move them to the lathe to clamp
- Clamp for 5 minutes
- Then check next ring and if needed true it up
$>$ Glue 2 rings to the walnut for the top
$>$ Glue 3 rings to the walnut for the bottom

Hollow and Drill

$>$ Using the tenon, chuck up the bottom and Hollow it out.

- I shoot for $1 / 4$ wall size
- Mark the outside and inside diameters before hollowing
$>$ Using the tenon, chuck up the top and Hollow it out
$>$ Drill the top with a $3 / 8$ " drill bit.
- This will hold the topper later

Glue The Two Halves Together

$>$ Next we glue the bottom and top together.
$>$ When it dries we are finally ready to turn the ornament.
$>$ I use the octagon/hexagon method to turn a sphere

- I have seen it called both.
- I describe the process in my blog
$>$ Let's see if I can make an ornament

Turning the ornament

- I used an octagon to model the sphere
- I drew lines on the wood that corresponded to the A and B positions
- 0.239 * $3=0.879$ " in from the outside towards the center
- Then the G-H line was made by turning down the end
 block to the proper depth.

$$
\text { ○ } 0.414 \text { * } 3=1.242^{\prime \prime}
$$

- Detail are on the blog

Template

Let's turn it

Wish me luck!

If there is time we will talk about feature rings

Feature Rings

Base for Arrows

Made up of:

- Maple
- Walnut Veneer
- Maple Veneer
- Walnut
- Maple Veneer
- Cherry
- Maple Veneer
- Walnut Veneer
- Maple

https://bebopsturnings.com/ornaments/segmented-christmas-ornament/

Arrows - Process

https://bebopsturnings.com/ornaments/segmented-christmas-ornament/

https://bebopsturnings.com/ornaments/segmented-christmas-ornament/

https://bebopsturnings.com/ornaments/segmented-christmas-ornament/

Thunderbird Process

Thunderbird Process (Continued)

